Bone morphogenetic protein-4 promotes induction of cardiomyocytes from human embryonic stem cells in serum-based embryoid body development.

نویسندگان

  • Shunsuke Takei
  • Hinako Ichikawa
  • Kohei Johkura
  • Akimi Mogi
  • Heesung No
  • Susumu Yoshie
  • Daihachiro Tomotsune
  • Katsunori Sasaki
چکیده

Cardiomyocytes derived from human embryonic stem (ES) cells are a potential source for cell-based therapy for heart diseases. We studied the effect of bone morphogenetic protein (BMP)-4 in the presence of fetal bovine serum (FBS) on cardiac induction from human H1 ES cells during embryoid body (EB) development. Suspension culture for 4 days with 20% FBS produced the best results for the differentiation of early mesoderm and cardiomyocytes. The addition of Noggin reduced the incidence of beating EBs from 23.6% to 5.3%, which indicated the involvement of BMP signaling in the spontaneous cardiac differentiation. In this condition, treatment with 12.5-25 ng/ml BMP-4 during the 4-day suspension optimally promoted the cardiomyocyte differentiation. The incidence of beating EBs at 25 ng/ml BMP-4 reached 95.8% on day 6 of expansion and then plateaued until day 20. In real-time PCR analysis, the cardiac development-related genes MESP1 and Nkx2.5 were upregulated in the EB outgrowths by 25 ng/ml BMP-4. The activation of BMP signaling in EBs was confirmed by the increase in the phosphorylation of Smad1/5/8 and by the nuclear localization of phospho-Smad1/5/8 and Smad4. The addition of 150 ng/ml Noggin considerably decreased the incidence of beating EBs and Nkx2.5 expression, and Noggin alone increased Nestin expression and neural differentiation in EB outgrowths. The cardiomyocytes induced by 25 ng/ml BMP-4 showed proper cell biological characteristics and a course of differentiation as judged from isoproterenol administration, gene expression, protein assay, immunoreactivity, and subcellular structures. No remarkable change in the extent of apoptosis and proliferation in the cardiomyocytes was observed by BMP-4 treatment. These findings showed that BMP-4 in combination with FBS at the appropriate time and concentrations significantly promotes cardiomyocyte induction from human ES cells.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Comparison of Cell Viability and Embryoid Body Size of Two Embryonic Stem Cell Lines After Different Exposure Times to Bone Morphogenetic Protein 4

Background: Activation of bone morphogenetic protein 4 (BMP4) signaling pathway in embryonic stem (ES) cells plays an important role in controlling cell proliferation, differentiation, and apoptosis. Adverse effects of BMP4 occur in a time dependent manner; however, little is known about the effect of different time exposure of this growth factor on cell number in culture media. In this study, ...

متن کامل

Effects of Treatment with Bone Morphogenetic Protein 4 and Co-culture on Expression of Piwil2 Gene in Mouse Differentiated Embryonic Stem Cells

Background Specific growth factors and feeder layers seem to have important roles in in vitro embryonic stem cells (ESCs) differentiation. In this study,the effects of bone morphogenetic protein 4 (BMP4) and mouse embryonic fibroblasts (MEFs) co-culture system on germ cell differentiation from mouse ESCs were studied. MaterialsAndMethods Cell suspension was prepared from one-day-old embryoid bo...

متن کامل

Differentiation of human embryonic stem cells into neurons

Human embryonic stem (ES) cells are undifferentiated pluripotent cells derived from the inner cell mass of blastocyst stage embryos. These unique cell lines have the potential to form virtually any cell type in the body and can be propagated in vitro indefinitely in an undifferentiated state. These cells are capable of forming embryoid bodies (EB) that contain cells from all three embryonic lin...

متن کامل

Differentiation of an embryonic stem cell to hemogenic endothelium by defined factors: essential role of bone morphogenetic protein 4.

Current approaches to differentiate embryonic stem (ES) cells to hematopoietic precursors in vitro use either feeder cell, serum, conditioned culture medium or embryoid body, methods that cannot avoid undefined culture conditions, precluding analysis of the fate of individual cells. Here, we have developed a defined, serum-free and low cell-density differentiation program to generate endothelia...

متن کامل

Differentiation of human embryonic stem cells into neurons

Human embryonic stem (ES) cells are undifferentiated pluripotent cells derived from the inner cell mass of blastocyst stage embryos. These unique cell lines have the potential to form virtually any cell type in the body and can be propagated in vitro indefinitely in an undifferentiated state. These cells are capable of forming embryoid bodies (EB) that contain cells from all three embryonic lin...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • American journal of physiology. Heart and circulatory physiology

دوره 296 6  شماره 

صفحات  -

تاریخ انتشار 2009